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Summary. The relation of quantum to classical regime of Franck-Condon 
transitions is investigated, focussing on transitions in diabatic, anharmonic 1D 
potentials of a reactive subsystem which allow for chemical bond formation and 
partial charge transfer. A survey of numerical results is given for the range of 
both regimes under different system characteristics, including the diabatic barrier 
height of the reactive subsystem, the transfer distance (barrier breadth), and the 
reduced mass (1 to ~ )  of the reactive mode. Energy distribution of transition 
components and of state-resolved statistical lifetimes are briefly discussed. 
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1. Introduction 

Recent developments towards an approach of chemical charge transfer processes 
in condensed systems or at interfaces in terms of Franck-Condon transitions on 
diabatic (or quasiadiabatic) local potential surfaces, have strengthened the 
demand for investigating strong anharmonic potentials and heavy-particle trans- 
fer over larger distances. In a preceding paper [1] we have taken into consider- 
ation heavy-atom or atom-group transfer over distances up to 240 pm, in order 
to get certain hints about local potential surface shapes compatible with kinetic 
data for electrochemical dark and photoprocesses on semiconductors. In this 
context, both the quantum and classical regimes of Franck-Condon transitions 
have briefly been taken into account. 

In pursuing this line of research, it has proved desirable to explore in greater 
detail the relationship of quantum to classical regime of transition probabilities 
in diabatic anharmonic potentials. Starting with the known quantum-statistical 
expression of the canonical transition probability of species conversion in a 
reactive subsystem, S, interacting with a classical medium, M (see below Eq. 
(1)), one gets in the classical limit for the total system (S + M) an expression (see 
below Eq. (4)) which corresponds to reduced mass p ~ oo of the reactive mode 
(in the calculations of this paper we limit ourselves to a 1D reactive subsystem). 
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An important characteristic of the processes under discussion is the distribution 
of transition components over initial-state vibration energies [2-4]. This distri- 
bution is accessible to calculation, in the quantum regime up to reduced mass of 
about 100gmo1-1. It degenerates in the classical limit into a continuous 
distribution which retains a finite width, due to multidimensionality of the total 
system (S + M). A related characteristic is the distribution of statistical lifetimes 
of initial states in a canonical ensemble up to reactive transition into final states. 
Both features are of interest with regard to the short-time limits of the canonical, 
or sudden, approximation, which are coarsely attained in the time-scales of 
equilibration of the reactive mode and the medium. 

In this paper, the following specific topics will be addressed and relevant 
results proved: 

(a) The smooth transition from the quantum to the classical regime. 

(b) Trends in the transition probability quotient for finite reduced mass (quan- 
tum regime) to infinite reduced mass (classical regime), with variation of the 
diabatic barrier height and the transfer distance (barrier breadth) of the reactive 
subsystem. 

(c) Dependence of transition probabilities in the classical limit at fixed barrier, 
upon transfer distance; comparison of Franck-Condon models with the adia- 
batic activation picture. 

(d) Influence of transfer distance upon tunneling in the quantum regime (small 
reduced mass). 

(e) Relation of the diabatic barrier height of the reactive subsystem to activation 
parameters of the total system. 

(f) Transition probability shift over medium reorganization energy and general- 
ization to anharmonic subsystems coupled to a harmonic medium. 

(g) Discussion of transition component and statistical lifetime distributions. 

(h) Discussion of dynamical equilibration effects on transition component distri- 
bution and total transition probability. 

2. Basic relations 

We shall first briefly summarize the basic relations used in the subsequent 
calculations. The quantum-statistical expression of the canonical transition prob- 
ability of a chemical conversion process in a reactive subsystem, S, interacting 
with a classical harmonic medium (see [1-4] and references therein), is 

>q- _= y '  = ") - ' .  Z  f(v) .g(w, (1) 
v w v 

where f ( v )  = exp ~Easv, ~ = - 1 /kT  

S 2 g(w, v) = ITb .... I " exp ~[Ebsw -- Easy ~- EM "~- AE]2/4EM. 

Pa~ ~ bw are transition components from vibration state v in the initial potential a 
to state w in the final potential b of the reactive subsystem S. Eas ~ and Ebsw are 
the corresponding vibration energies (dependent on reduced mass; Eq. (1) is 
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moreover valid with many-dimensional, non-separable potentials). Za q~ = ~ f ( v )  
is the quantum partition function of the initial states. Transition matrix elements 
of the subsystem S are usually subjected to the Condon approximation, 
Tbw,avS ~ V " (bw[av>, with V the electronic matrix element and (bwlav)  the 
Franck-Condon overlap. AE is the total energy minima difference of states a 
and b, and E~ the classical reorganization energy of a harmonic medium. Some 
calculational annotations are made in the appendix. 

The distribution over E~o of transition components from initial state av to 
any final states b is given by 

Pav~b ~-- £ Pav~bw = ( ~ / h 2 g M k T )  1/2 . f ( v )  • ( Z  qu) - 1 .  £ g(w, v). (2) 
w w 

Division of Pao-,b by the Boltzmann factor yields the reciprocal statistical 
lifetime of initial states in a canonical ensemble up to reactive transition: 

1/'Cav = P a y  -*b " [f(v)/zqu] --1 (3)  

In the classical limit of the total system, the transition probability is in 
Condon approximation, 

(Pa--, b ) d =  Or/h2E~kT)~/2. V 2 . (Z~i)-~. dR -exp fie(R), (4) 
oo 

where 

e(R) = E,,(R) + [Eb(R ) - Ea(R) + EM + AE]2/4EM. 

Equation (4) is valid in arbitrary initial and final potentials Ea(R), Eb(R) of the 
reactive subsystem (requiring separability of many-dimensional potentials, con- 
trary to Eq. (1)). Z J  represents a classical limit of the partition function of initial 
states, likewise expressed as integral over R. Both Z~ t and the last integral in (4) 
have the dimension of R which is thus cancelled from Eq. (4). 

Diabatic 1D model potentials of the initial and final states are chosen as 
Morse potentials 

E(R) = D[1 - exp( - a ( R  - Ro))] 2, (5) 

where Ro labels the potential minimum, D = k/2a 2 is a bond dissociation energy, 
and k the harmonic force constant. With anharmonicity parameter a ~ 0 and 
D ~ oo, Eq. (5) turns into a harmonic potential. 

A classical analogue P(Ea) ct of the transition component distribution over 
initial energies Ea can be based on the quantal-classical correspondence 

(p)qu = £ Pav~b, (p)c ,  = ~dE ,  ' P(Ea) c'. (6) 
v .) 

Equations (6) and (4) are obeyed with 

P(E~)cl= (dE~ ~dR)-1.  (rc/h2E~kT)1/2. V 2 . (ZCt)-i .exp fie(R), (7) 

where dE~/dR is taken from (5); Eq. (7) includes separate contributions of both 
sides of the Morse curve, R > R0 and R < R o. Equal dimension of quantal and 
classical transition component distribution could be achieved by dividing P ~ b  
through hcGv ; in Figs. 5 and 6 below we renounce this transformation since it 
leaves the distribution shape unchanged. 
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Fig. 1. Diabatic 1D potentials of 
initial and final state of the reactive 
subsystem. Comment see text 

3. Calculations 

A typical diabatic potential representation of  initial and final states a and b of a 
reactive 1D subsystem is sketched in Fig. 1. It shows three essential parameters 
of  the forward process a ~ b  to be considered in the following: the transfer 
distance, or potential minima distance AR; the total energy zero point differ- 
ence AE (including the medium energy difference of states a and b); and the 
diabatic barrier height E* of  the subsystem S (depending on initial and final 
potential shapes and on AE; the latter dependence includes a minor medium 
effect). 

3.1. Smooth transition from quantum to classical regime 

Some data which establish a smooth transition from the quantum to the 
classical regime of  transition probabilities, ( P ) ,  are given in Tables 1 and 2. 
Data with reduced mass # = 1 to 100gmo1-1 were calculated from Eq. (1); 
the data with /~---, oo correspond to the classical limit and are obtained 
from Eq. (4). As a general feature of these examples, and also of a great 
number of further calculations, one recognizes a monotonous decrease of  
( P )  with increasing reduced mass #, or decreasing vibration quantum hco, up 
to the classical limit (possible exceptions concern very low temperature and 
very large force constant and are mostly irrelevant). The temperature depen- 
dence of ( P )  included in Tables 1 and 2 will be commented on below in Sects. 
3.5 and 3.6. 

With increasing reduced mass, a greater number of transition com- 
ponents Pav~bw contribute significantly to the total transition probability. 
Computational techniques for anharmonic F ranck-Condon  overlap follow- 
ing [2-4] are addressed in the appendix. A typical limitation in the calculation 
of quantal transition probabilities (p)qu c a n  occur at large AR, when E* lies 
near the Morse dissociation limit D of at least one of  the two intersecting 
potentials, and there are still large transition components near D. Calculation 
of (p)qu then possibly becomes unsafe. Relevant conclusions are drawn in the 
subsequent section. 
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Table 1. Transition probabilities <P> in the quantum regime (reduced mass 1 to 30) and classical 
regime (reduced mass co) 

k a =k  b = 20 N m-~, Da =D b =4eV; E M =2eV; V2 = 0.1 eV2; AR =80pm 

T/K #/g m o 1 - 1  lg<Pa~b/s-l> 

for AE/eV = -0.2 0 +0.2 
E*/eV = 0.011 0.085 0.211 

100 1 - 7 . 1  - 1 1 . 9  - -  17.1 
I0 -8.8 -13.6 --18.9 
30 -9.1 -13.9 --19.1 
oo -9.3 -14.1 --19.3 

300 1 7.1 5.5 3.75 
oo 6.9 5.3 3.55 

k a =k  b = 600 Nm- l ,  Da =D b =4eV; E M = 0.5 eV; V2 = 0.1 eV2; AR =80pm 

T/K #/g mo1-1  lg<Pa~b/s -]> 

for AE/eV = -0.5 0 +0.5 
E*/eV = 1.09 1.34 1.59 

100 1 6.6 0.4 -18.5 
10 -11.8 -21.3 -37 
30 -28 -40 -53 
oo -46 -59 -71 

300 1 7.2 4.3 - 1 . 2  

10 -2.8 -7.0 -11.2 
30 -4.3 -8.6 -12.7 

-5.1 -9.7 -13.5 

3.2. Trends in the transition probability quotient ( p >qu/ < p }ct 
with variation o f  E* and AR 

Figure 2 shows on a logari thmic scale the t ransi t ion probabi l i ty  quot ient  
(p>qu/(e}ct  referring to the extreme cases of  reduced mass # = 1 and  It ~ o0, in 
dependence of  the barr ier  E* and  the transfer distance AR. Two values of  
harmonic  force constants  k were chosen, and  the corresponding two sets of  b o n d  
dissociation energies D recalculated from E* and  AR. A short  comment  should 
be added: in order to get a broad survey of  (p )q , /<p)c t  over E* and  AR, data  
with higher barriers ( >  1 eV) were included in Fig. 2. These data  are reliable, 
both  physically and  computa t ional ly ,  with regard of  the applied F r a n c k - C o n -  
don  approximat ion,  bu t  suffer in the kinetic respect from too low values of  <P> 
at room temperature.  We therefore at tach no significance to absolute  <P> data  
at this place. Quan ta l  t ransi t ions with # = 1, referring to p ro ton  transfer between 
heavy atoms, are mostly restricted to low values of  AR. 
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T a b l e  2. Transition probabilities (P )  for different potential shapes of initial and fmalstates;fixed 
diabatic barrier height (diabatic crossing point) E* = 0.5 eV 

ka=250Nm - 1 , k b = 1 2 5 N m - l ; E M = 2 e V ;  V = I e V ; A E = 0  

T/K AR/pm Da/eV Db/eV #/gmo1-1 lg(Pa~b/s -1) 

100 80 1.8 4.06 I --13.1 
10 --24.9 
30 --30.1 

100 --32.6 
oo --33.7 

300 80 1.8 4.06 1 3.2 
10 0.1 
30 -0.24 

100 -0.37 
oo -0.41 

100 80 1.5 5.9 1 --13.1 
10 --25 
30 --30.2 

--33.5 

300 80 1.5 5.9 1 3.18 
10 0.14 
30 -0.17 

oo -0.33 

100 100 1.8 0.94 1 - 14.6 
10 -26.4 
30 -28.2 

100 -28.9 
oo -29.1 

300 100 1.8 0.94 1 2.83 
10 1 .37  

30 1.22 
oo 1.18 

F igure  2 clear ly shows how (p)qu/(p)d decreases wi th  larger  t ransfer  
dis tance AR, and  increases with larger  bar r ie r  height  E*.  This  general  fea ture  
is also coarse ly  preserved with  o ther  realist ic po ten t ia l  shapes,  and  with 
energy min ima  difference values [AEI>0. A n  ana logous  (p)qu/(p)ct 
d i ag ram over  AR is shown in Fig.  3, for  the exper imenta l ly  re levant  q u a n t u m  
range  o f  medium-s ized  reduced mass,  t aken  as /~ = 30. This d i a g ra m gives a 
quant i ta t ive  survey o f  the e r ror  in ( P )  which is made  when a real  (quan ta l )  
system with  effective mass  o f  a b o u t  30 is a p p r o x i m a t e d  by the classical limit.  
As in Fig. 2, this l imit  is f avoured  for  small  bar r ie r  E* a n d / o r  large t ransfer  
d is tance  AR. 
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Fig. 2. Logarithmic transition probability quotient l g ( ( P ) q " / ( P ) d ) ,  referring to reduced mass # = 1 
(quantum regime ) and p - *  oo (classical regime), vs. transfer distance AR,  for different diabatic 
barrier heights E*: from bottom to top E* = 0.91; 1.34; 1.75 eV. Equal but opposed initial and final 
potential shape: k~ = k  b, D a = D  b, A E = 0 ;  T = 3 0 0 K .  Label • refers to k a = 4 0 0 N m  -1, & to 
k a = 6 0 0 N m  -1. The Da-values (in eV) corresponding to E*, k a and A R  are given in the figure 

3.3. Dependence of ( P ) in the classical limit at fixed barrier height, 
on the transfer distance AR: comparison of Franck-Condon 
models with the adiabatic activation picture 

The familiar, classical activation picture predicts a rather insignificant depen- 
dence of rate constants on the adiabatic barrier breadth. A proof of this feature 
in the diabatic (or quasiadiabatic) Franck-Condon approach to chemical kinet- 
ics in condensed systems is so far lacking. The present application to strong 
anharmonic systems allows one to consider this question more closely. 

Referring to Figs. 2 and 3, we add here the information that the correspond- 
ing l g (P)  ct data in the classical limit and respectively at fixed E*, differ only by 
0.5 to 1 upon variation of AR. This statement holds for fixed electronic matrix 

3 F I r P I I 

Pq" 2- ~~~ 

o do io ibo 14o 
AR / p m  

Fig. 3. Logar i thmic transit ion probabi l i ty  quotient Ig((P)q"/(P)'), referring to reduced mass # = 30 
(quantum regime) and # ~ oo (classical regime), vs. transfer distance AR, for  different diabatic 
barrier heights E*. Parameters as Fig. 2 
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element 1I. One may expect however a decrease of V at larger AR (to be verified, 
in principle, by quantum-chemical calculations). Taking this trend into account, 
one expects a (moderate) decrease of lg (P)  d with increasing barrier breadth AR 
at fixed barrier height E*. Returning to the adiabatic activation picture, this 
feature reflects the influence of excited adiabatic potential surfaces upon transi- 
tion probabilities, which is neglected in the usual transition state theory. The 
Franck-Condon approach includes this influence via the electronic matrix 
element, which obeys the quasiadiabatic expression V-~ 0.5(E2(R*)- El(R*)), 
where E 1 and E2 are adiabatic ground-state and excited-state potential surfaces 
taken at the diabatic crossing point R*. 

Minor improvement in these considerations may be possible if the activation 
barrier of the total system is fixed, rather than E*. This will be addressed in Sect. 
3.5. 

3.4. Influence of  transfer distance on tunneling in the quantum regime 
(small reduced mass) 

The preceding discussion refers to the classical limit of transition probabilities. 
The quantum effect upon ( P )  is immediately given by the quotient (p)qu/(p)ct: 
examples of quantitative data for reduced mass p = 1 and # = 30 in Figs. 2 and 
3 show the strong diminution of quantum effects with larger barrier breadth AR. 

3.5. Relation of the barrier height E* of the reactive subsystem 
to activation parameters of  the total system 

As addressed in the text to Fig. 1, the diabatic barrier E* is a parameter of the 
reactive subsystem (including a minor medium effect on AE). A short comment 
is here given on the relation of E* to a suitably defined total barrier (Arrhenius 
activation energy EA). In the classical limit following Eq. (4), the activation 
energy E~ may be chosen to be e(R) in the exponent of Eq. (4), taken at the 
saddle coordinate R~ t, which is obtained from de/dR = 0 (the approximate 
validity of saddle-point integration of Eq. (4) taken for granted, as is the case 
in the following examples). Table 3 gives some data which show that E~ 

Table 3. Comparison of diabatic barrier E* of the reactive subsystem and the corresponding crossing 
point coordinate R*, with classical activation parameters E~ and R~ ~ of the total system, obtained 
from Eq. (4): R~ t from de~dR = 0; E~ = e(RJ) 

T = 3 0 0 K ; A E = 0 ; E ~ = 2 e V ;  V = l e V ; A R = 1 2 0 p m  

k~/N m -l  kb/N m -1 Da/eV Db/eV E*/eV R*/pm E~ /eV R~t /pm E~ -- E* 
EM 

300 500 3 29 1.75 82 2.07 95 0.16 
600 600 2.1 9.4 1.75 80 1.96 104 0.105 
500 800 3 9.0 2.12 80 2.41 95 0.145 
600 500 6 11.6 2.71 63 3.19 67 0.24 

The last column shows the relative enhancement of E~ over E*, which turns out the smaller the 
larger the potential anharmonicities 
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exceeds E* by a fraction of the medium reorganization energy EM which depends 
on details of potential anharmonicities. 

In general, the plot of Ig<P> over 1/T or fl is nonlinear, especially in the 
quantum regime and at low temperature. The weakened temperature dependence 
of (P> at small reduced mass is well reflected in Tables 1 and 2. Calculational 
examples of T-dependent activation energies based on a special division of (P> 
into Arrhenius parameters are contained in [4, 5]. Theoretical problems of 
activation parameters have been discussed in [6]. 

3.6. Shift of ( P > with medium reorganization energy: generalization 
to anharmonic subsystem coupled to harmonic medium 

We mention here a slight generalization concerning the dependence of (P> on 
the medium reorganization energy E~t. Calculations prove that the shift 0 In(P>/ 
OEM ~ -- 1/4kT (with a minor decrease proportional to AE2), which is valid in 
the classical, harmonic Marcus model, also holds when an anharmonic sub-sys- 
tem with arbitrary reduced mass (1 to oo) is coupled to a harmonic medium. 

The validity of harmonic solvent reorganization has been supported by 
recent simulation studies of outer-sphere electron transfer processes [7, 8]. The 
medium effect upon strong anharmonic chemical bond formation processes still 
requires closer consideration. Absolute estimates of <P> are, so far, mostly 
limited by the uncertainty in EM. 

This latter remark holds above all at low temperatures, as is illustrated by the 
two examples of Table 1. The upper example (corresponding to very fiat 
potentials) includes an almost barrierless transition in the subsystem S. Never- 
theless at/~ = 1 and 100 K, the transition probability, (P>, is much smaller than 
in the lower example, despite adiabatic barrier E* of more than 1 eV due to the 
small E M assumed in the latter case. 

3. 7. D&tribution of transition components and stat&tical lifetimes 
over initial-state vibration energy 

We proceed now to a more detailed consideration of state-resolved properties of 
the overall chemical conversion process. Firstly we give in Fig. 4 an example of 
higher excited anharmonic initial and final vibration functions lay > and Ibw> and 
their overlap product. The integral (bw[av> over the reaction coordinate consti- 
tutes the Franck-Condon factor which controls the individual transition compo- 
nent Pawbw appearing in Eq. (1). The overwhelming influence of the outer wave 
function maxima upon the overlap product, typical for transfer processes over 
large AR, is apparent. In the classical limit these outer maxima turn to a 6-peak. 

Examples of the transition component distribution P,,v~b over the initial- 
state vibration energy Ea~ are given in Figs. 5 and 6, for different reduced mass. 
Pan,b, following Eq. (2), gives the transition probability from one thermally 
weighted initial state av into any final states b. The distribution Pao--,b(E,,v) 
degenerates in the classical limit into a continuous distribution P(E,O d following 
Eq. (7). 

Figures 5 and 6 correspond to the first two examples given in Table 2. The 
upper part of Fig. 5 shows the discrete distribution Pawb(Ea~ ) in the quantum 
regime for reduced mass/t = 1, 10, 30, and the continuous distribution P(E,) ~t at 
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Fig. 4. Examples of  higher excited 
vibration functions ~bao and ~bbw in 
anharmonic diabatic initial and final 
potentials (top) and their overlap 
product q 5  • q~bw (bottom), vs. reac- 
tion coordinate R. Quantum states 
v = 8, w = 6. Parameters: 
ka = k b  = 600 N m - 1 ,  

D a = D b = 1.68 eV, d R  = 80 pro, 
/~ = 10 g m o 1 - 1  

# - .  oo, all taken at 300 K. One recognizes that the distribution maxima are 
shifted to lower P-values and to higher energies Ea when # increases from 1 to 
oo. Figure 6 shows, for the same system, the distribution pattern at 100 K. At 
low temperature, the distribution maxima typically lie at lower energies than at 
300 K, and at extreme P-values. 

In the lower part of Fig. 5, the distribution of statistical lifetimes za~ 
of initial states in a canonical ensemble, up to reactive transition into a final 
state is shown. The reciprocal lifetime 1/za~, following Eq. (3), represents 
simply the transition component Pan-,b, divided by the Boltzmann factor of 
state av, irrespective of the frequency of thermal transitions within the initial 
series of states. The short-time, or high-energy branch of the lifetime distribu- 
tion za~(Eao) gives a rough indication of the limitations of the canonical ap- 
proximation (Eqs. (1) or (4)) due to onset of interference with time scales of 
dynamical equilibration processes. This point will be considered further in Sect. 
3.8. 

Division of Pa~ ~ b into the individual transitions into final states bw yields, 
for given av, the distribution of Pa~ ~ bw over final states bw. Table 4 shows for 
the maximal transition component (av = 5) at p = 10 of Fig. 5, the distribution 
of the relative transition components (Pas~bw/P~5~b) and the corresponding 
Franck-Condon overlap <bwla5 ) which increases typically with higher final- 
state functions bw. 
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Fig. 5. Quantal and classical distribution of  transition components (top) and of  statistical lifetimes 
(bottom), vs. initial-state vibration energy. Reduced mass from fight to left: # = 1; 10; 30 (quantum 
regime); ~ (classical regime) Pq~b/s  -1 from Eq. (2), P(Ea)Ct/s-I eV -1 from Eq. (7). zav/s from 
Eq. (3). Potential parameters: k , = 2 5 0 N m  -1, D a = l . 8 e V  , k b = 1 2 5 N m  -1, D b = 4 . 0 6 e V  , 
AR = 80 pm, AE = 0, E M = 2 eV, E* = 0.5 eV, temperature 300 K 
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Fig. 6. Quantal and classical distribution of  transition components vs. initial-state vibration energy. 
Conditions as Fig. 5, but temperature 100 K 
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Table 4. Franck-Condon overlap (bwlav)  of the maximal transition 
component shown in Fig. 5 for g = 10, into those final states which 
contribute 99% to P a w b  

AR ~ 80 pm, k a = 250 N m -  l, kb = 125 N m -  l, Da = 1.8 eV, 
D b = 4.06 eV, E M = 2 eV, AE = 0 

av (max) bw Pas+b~ . I000 (bwla5)  
ea5~b 

3 7 0.001 
4 22 0.003 
5 57 0.008 
6 109 0.02 
7 164 0.04 
8 196 0.08 
9 184 0.1 

10 135 0.2 
11 77 0.25 
12 32 0.3 
13 9 0.3 

3.8. Discussion of dynamical equilibration effects on transition component 
distribution and on total transition probability 

Finally in this paper, we ask briefly for the short-time limits of canonical 
transition probabilities following Eq. (1) or (4), coarsely attained in the time 
scales of equilibration dynamics of the reactive subsystem as well as of the 
medium, or the different parts of the medium (in cases of interfacial processes). 
Our present knowledge of these processes is incomplete. We therefore restrict 
ourselves to a preliminary discussion focussing on not too fast reactions. 

Three kinds of dynamical processes are relevant in the present context: (I) 
the relaxation, following the preparation of the initial state of the reactive 
subsystem, into a canonical distribution; (II) relaxation of the solvent part of the 
medium; and (III) relaxation of the lattice part, in interfacial processes. 

Processes of type (I) depend on the phonon interaction dynamics between the 
subsystems S and M, as is also the case in other energy exchange processes, e.g. 
thermal accommodation. According to classical arguments, such processes are 
very fast ( <  10 -13 s); related quantum effects are, as yet, largely unexplored. 

Processes of type (II) have received greater attention in recent years (cf. [9-12] 
and references therein). According to these treatments, the solvent reorganization 
dynamics is controlled by the spectrum of longitudinal dielectric relaxation [9, 10]. 
Information is experimentally accessible in fast optical or electron transfer 
processes in solvents with higher viscosity. Slow solvent dynamics leads to 
diminution of ( P )  relative to the canonical, or sudden, approximation. This 
diminution can, however, be suppressed by fast dielectric relaxation, small 
electronic matrix element V (favoured in outer-sphere electron transfer over larger 
distance, not to be confused with heavy-particle transfer), or, following an 
argument in [ 11], by small Franck-Condon overlap. The latter factor is relevant 
in chemical conversion processes with a broad transition component distribution 
(cf. Fig. 5 and Table 4). One generally concludes that, if at all, the upper 
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branch of the P, , , - - ,b(Ea~)  distribution can become dynamically affected. For 
chemical conversion in aqueous medium at room temperature, we estimate a 
possible dynamical effect amounting to a factor < 2 in ( P ) ,  which is far below 
the present uncertainty in static medium reorganization effects. 

Lattice reorganization (process (III) addressed above), in addition to solvent 
reorganization, has been considered in [6, 13], in the sudden approximation. 
Lattice equilibration after a perturbation should again be controlled classically. 
Special quantum (e.g. plasmon) excitations are not known to be relevant in the 
energy range under consideration. 

4. Summary 

In this paper, the long-standing problem of the relation of the quantum to the 
classical regime and of the conditions of the classical approximation of nuclear 
motion in elementary chemical processes has been considered, with view on two 
actual but so far yet unexplored aspects: firstly, we proceed from Franck-  
Condon transitions in diabatic potentials, which are particularly suited for 
treating reactive processes in condensed systems, including chemical bond forma- 
tion and partial charge transfer; secondly we take into account heavy-particle 
transfer in strong anharmonic potentials allowing for transfer over larger dis- 
tances. 

A synopsis of numerical data is given which illustrate the effects of finite to 
infinite reduced mass of a 1D reactive mode (quantum to classical regime), upon 
total transition probabilities and transition component distributions, in depen- 
dence of the diabatic barrier height of the reactive subsystem and the transfer 
distance (barrier breadth). The dependence of transition probability on the 
medium reorganization energy, and the limits of the canonical, or sudden, 
approximation of Franck-Condon transitions due to finite equilibration times of 
the reactive mode and the medium were also briefly considered. The present 
calculations are confined to 1D potentials of Morse type. Several quantal and 
classical problems with multidimensional, non-separable potentials (partly ad- 
dressed in [14]) are related to the present theme. 

Appendix: Caleulational annotations 

We add some calculational details to Sect. 2. The Franck-Condon overlap 
( b w l a v )  which enters into the transition elements s Tbw,av 
calculated using Morse functions 

q~v(z) = Nv " exp( -z /2 )  • z ' / 2 . L v + , ( z )  

with 

of Eq. (1) has been 

N,,  = {[aow!]/F(o:  + v + 1)} 1/2, 

z = 2fl • exp( - - a ( R  - R o ) ) ,  ot = 2fl  - 2v  - 1, f l  = k / a 2 h o g ,  

L v + ~ , ( z )  = ~. ( - 1) v-z" ( l ! (v  - l ) t )  - 1  . (0~ + I))l" ,2 ° - l ,  
1=o 

(~ +v)t  = (~ + v)(ct + v  -- 1)(ct + v  --2) • • • (~ + v - - l +  1), 

(A1) 

(A2) 
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where v is the vibration quantum number, k the harmonic force constant, # the 
reduced mass, co = ( k / p )  1/2, a the anharmonicity constant, and L are Laguerre 
polynomials. Analytical expressions for Morse overlap are available only for 
special cases; on the other hand, the numerical calculation of  ~bv(z ) from 
(A1, A2) fails for higher quantum numbers v ~> 4, because of alternating signs of  
an increasing number of terms in the Laguerre polynomials. An expedient 
solution is the recursive calculation of  higher Morse functions [ 15] from 

exp( - a ( R  - Ro))  " 49v = Avery -t- B~c~v_ l + B~+ l~b~+ 1, 

A, = [2fl(v + 1/2) -- v(v + 1)]/[(fl -- v)(o9 -- v - 1)], (A3) 

B~ = 3/2(3 - v) • {[v(Zfl - v ) ] / [ ( 3  - v - 1/2)(3 - v + 1/2)1} 1/2, 

as proposed in [16]. This immediately allows the recursive calculation of  
Franck-Condon overlap [3] up to high quantum numbers, v, w, with negligible 
numerical error depending on the number of  integration intervals. 

The quantum to classical relation of  conversion probabilities following Eqs. 
(1) and (4) can be straightforwardly extended to separable many-dimensional 
potentials, as will be outlined in a broader context in [ 1 7]. 
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